SCHEME OF COURSE WORK

Course Title	OPERATIONS RESEARCH		
Course Code	: 19ME21P1	L P C	: 2 0 2
Program:	: M.Tech.		
Specialization:	: CAD/CAM		
Semester	: II		

Course Outcomes (COs):

At the end of the course, the student will be able to

- 1 Formulate a linear programming problem for given problem and solve this problem by using Simplex techniques
- 2 Evaluate sensitivity analysis to the given input data in order to know sensitive of the output.
- 3 Apply the concept of non-linear programming for solving the problems involving non-linear constraints and objectives.
- 4 Solve deterministic and Probabilistic inventory control models for known and unknown demand of the items
- 5 Apply the dynamic programming to solve problems of discrete and continuous variables

Program Outcomes (POs)

At the end of the program, the students in CAD/CAM will be able to

- 1. acquire fundamentals in the areas of computer aided design andmanufacturing
- 2. apply innovative skills and analyze computer aided design and manufacturing problemscritically
- 3. identify, formulate and solve design and manufacturingproblems
- 4. carry out research related to design andmanufacturing
- 5. use existing and recent CAD/CAMsoftware
- 6. collaborate with educational institutions, industry and R&D organizations inmultidisciplinary teams
- 7. apply project and finance management principles in engineeringprojects
- 8. prepare technical reports and communicateeffectively
- 9. engage in independent and life-long learning and pursue professional practice in their specialized areas of CAD/CAM
- 10. exhibit accountability to society while adhering to ethical practices
- 11. act independently and take corrective measures wherenecessary

Course Outcome versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	S	S	М	М		М						
CO-2	S	S	S	Μ		М	Μ		Μ			
CO-3	S	S	S	S		Μ	Μ		Μ			
CO-4	S	Μ							Μ			
CO-5	М		Μ	М		Μ			Μ			

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

1				1	1
WEEK	TOPIC / CONTENTS	COU		TEACHI	ASSESSME
		OUT		NG-	NT
		COM	SAMPLE QUESTIONS	LEARNI	METHOD
		ES		NG	&SCHEDU
				STRATE	LE
				GY	
1	Optimization techniques	CO1	1. Explain the various types of	Lectures	
			Optimization techniques.	PPT,	
			2. Discuss about simplex techniques.	Seminar	
			3 Explain about inventory control		
2		CO1	models		
	model formulation and		models		
	models				
3	simplex techniques	CO1	-		
_	I I I I I I I I I I I I I I I I I I I				
4		CO1			
	. inventory control models				
					Seminar
					(week 3-
5	Formulation of a LPP -	CO2	1. Using graphical method, the optimum	Lectures	7)
	graphical solution for LPP		solution of the LPP of maximizing $z =$	PPT,	
			10x+15y subject to the $2x+y$ 26	Seminar	
			x + 2y + 28 + y + 5 and $x + 0 + 0$ is		
6	revised simplex method	CO2	x+2y 20, $y-x$ 5 and x 0, y 0 is		
			obtained as $x = \dots $		
			2. Write the dual of the following LPP		
			Maximize $z = 5x1+3x2$ subject to the		
7	duality theory, dual simplex	CO2	constraints: $3x1+5x2$ 15,		
	method		5x1+2x2 10, where x1 0 and x2 0		
			3. Discuss the effect of variation or		
			changes in objective function		
		002	coefficients Ci's for a given I PP		
8	sensitivity analysis -	CO2			
	parametric programming				
0	Mid-Test 1	CO 1			
7	10110-1030 1	CU-1,			
		CO-2			
1					

Teaching-Learning and Evaluation

10	Nonlinear programming problem - Kuhn-Tucker conditions	CO3	 Writ any three differences between PERT and CPM. Maximize Z = -x₁² - x₂² - x₃² + 4x₁ + 6x₂ Subject to the constraints 	Lectures PPT, Seminar	
11	CPM/PERT	CO3	$x_1 + x_2 \le 2$ $2x_1 + 3x_2 \le 12$ $x_1, x_2 \ge 0$ Using Kuhn-Tucker conditions 3. Define total float, free float and independent float		
12	single server and multiple server models	CO4	 Derive Wilson harris formula for EOQ. Give an average arrival rate of 20 per hour there are two options for a customer: A single channel with service rate 22 customers per hour or a two service channel with service rate of 11 customers 	Lectures PPT, Seminar	Seminar
13	deterministic inventory models - probabilistic inventory control models	CO4	per hour. Determine which is a better option. (with respect to waiting time)3. Define degree of difficulty.		(week 11- 16)
14	geometric Programming	CO4			
15	Single and multi- channel problems , sequencing models,	CO5	 Explain about bellmans principle of optimality. Define total elapsed time, idle time and no passing rule. Explain about principle of dominance 	Lectures PPT, Seminar	
16	dynamic programming, flow in networks,	CO5			
17	elementary graph theory, game theory simulation	CO5			
18	Mid-Test 2	CO-3, CO- 4, CO-5			
19/20	END EXAM	All Co s			